zerolib Documentation
Release 0.0.0

ZeroMux

Jan 01, 2018

Contents

1 How to install 3
2 Table of contents 5
2.1 zerolib.integrity - Working with dataintegrity 5
2.2 zerolib.protocol - Helpers for common data structures 8
2.3 zerolib.protocol-Fulllistofpackets 12
24 zerolib.nettools - Higher level network I/O utilities 15
2.5 DISCUSSION e e e e e 16

zerolib Documentation, Release 0.0.0

zerolib is a minimalist utility library for working with the ZeroNet protocol, which is based on MessagePack and
uses deterministic elliptic curve signature. It is written for Python 3.5+

This is a highly experimental library. Before its API is stablized, developers should pay close attention to this docu-
mentation, as the public API provided by the library may be changed.

Features include:
* Digital signatures
* Hashing and data integrity checking
* TLS certificate utilities
* Packet parsing and formatting
» Connection managing
* Readers-writer locks

zerolib is inspired by the reference ZeroNet implementation written by shortcutme, but features more consistent
API and greater flexibility.

zerolib is written and maintained by MuxZeroNet with help from the contributors and is licensed under the GNU
General Public License version 3. If you like this project, please consider running a seed box.

Note: To avoid confusion, a private key is usually called a secret key in the documentation.

Contents 1

zerolib Documentation, Release 0.0.0

2 Contents

CHAPTER 1

How to install

I recommend you use zerolib in a virtual environment.

sudo apt install python3-pip python3-venv

mkdir devel

python3 -m venv devel/

cd devel

git clone https://github.com/MuxZeroNet/zerolib.git

Super important! You must activate the virtual environment.

The "source’ command activates the virtual environment.
source ./bin/activate
which python3 && which pip

cd zerolib/
python3 -m pip install -r requirements.txt —--upgrade

python3 -m pip install -r ci-requirements.txt —--upgrade

python3 run_tests.py

zerolib Documentation, Release 0.0.0

4 Chapter 1. How to install

CHAPTER 2

Table of contents

2.1 zerolib. integrity - Working with data integrity

This module provides functions and classes for signing and verifying data with appropriate abstration.

It defines the following public functions and classes.

2.1.1 Bitcoin key pair
key_pair ()
Generate a public key and a secret key, returning a tuple containing (publickey, secretkey).
Return type (PublicKey, SecretKey)

public_digest (publickey)
Convert a public key to its ripemd160 (sha256 ()) digest, returning the raw 20-byte digest.

Return type bytes

2.1.2 Bitcoin address

compute_public_address (publickey)
Convert a public key to a public Bitcoin address, returning a Base58Check-encoded string.

Return type str

compute_secret_address (secretkey)
Convert a secret key to a secret Bitcoin address, returning a Base58Check-encoded string.

Return type str

bitcoin_address ()
Generate a public address and a secret address, returing a tuple (public_address, secret_address)
containing two Base58Check-encoded strings.

zerolib Documentation, Release 0.0.0

Return type (str, str)

address_public_digest (address)
Convert a public Bitcoin address to its ripemd160 (sha256 ()) digest, returning the raw 20-byte digest.

Return type bytes

decode_secret_key (address)
Convert a secret Bitcoin address to a secret key, returning the secret key as a SecretKey object.

Return type SecretKey

2.1.3 Digital signature

recover_public_key (signature, message)
Recover the public key from the signature and the message, returning a PublicKey object. The recovered public
key guarantees a correct signature.

Parameters
* signature (bytes) — the raw signature.
* message (bytes) — the message.
Returns a PublicKey object.

sign_data (secretkey, byte_string)
Sign the message byte_string with secretkey, returing a 65-byte serialized signature as a bytes-like
string. The returned signature is compatible with ZeroNet (i.e. in the Electrum format)

Parameters
* secretkey (SecretKey) — the secret key.
* byte_string (bytes) — the message.
Returns a 65-byte binary string.

verify data (key_digest, electrum_signature, byte_string)
Verify if electrum_signature is the signature for the message byte_string and is produced with the
secret counterpart of key_digest.

Parameters
* key_digest (bytes)—theraw ripemdl160 (sha256 ()) digest of the public key.
* electrum_signature (bytes) — the raw signature.
* byte_string (bytes) — the message.
Raises
* SignatureError — if it finds the signature forged or otherwise problematic.

* ValueError - if it finds the signature cannot be parsed.

2.1.4 Message digest

Note: Unless otherwise noted, algo="sha512"' refers to the SHA-512/256 algorithm.

6 Chapter 2. Table of contents

zerolib Documentation, Release 0.0.0

digest_bytes (data, algo="sha512’)
Compute the digest of data, a bytes-like object, returing a tuple containing (digest, data_length).
The first element is the raw digest. The second element is the length of the given data.

Parameters

* data (bytes) — the data to digest.

* algo (str)—the name of the digest algorithm.
Returns a two-element tuple.
Return type (bytes, int)

verify_digest_bytes (data, expect_digest, expect_size = None, algo="sha512’)
Verify if data have the expected digest expect_digest and have the expected size expect_size. If
expect_size is None, then data size will not be checked.

Parameters

* data (bytes) — the data to digest.

* expect_digest (bytes) — the expected raw digest.

* expect_size (int or None)-the expected data size.
Raises DigestError — if the digest or size does not match.

digest_stream (stream, algo="sha512’)
Compute the digest of stream, a stream-like object, returning a tuple containing (digest, stream_size).
The first element is the raw digest. The second element is the length of the given data.

Parameters
* stream (BytesIO) - the stream to read data from and digest.
* algo (str)—the name of the digest algorithm.

Returns a two-element tuple.

Return type (bytes, int)

verify digest_stream (stream, expect_digest, expect_size = None, algo="sha512’)
Verify if the data read from st ream have the expected digest expect_digest and have the expected size
expect_size. If expect_size is None, then stream size will not be checked.

Raises DigestError — if the digest or size does not match.

digest_file (path, algo="sha512’)
Compute the data digest of the file located at the given path. The parameter path should be a unicode string.
Returns a tuple containing (digest, stream_size). The first element is the raw digest. The second
element is the length of the given data.

Parameters
* path (str) — the path to the file to read data from and digest.
* algo (str) - the name of the digest algorithm.

Returns a two-element tuple.

Return type (bytes, int)

verify digest_file (path, expect_digest, expect_size=None, algo="sha512’)
Verify if the file at path has the expected digest expect_digest and have the expected size
expect_size. If expect_size is None, then file size will not be checked.

2.1. zerolib.integrity - Working with data integrity 7

zerolib Documentation, Release 0.0.0

Raises DigestError — if the digest or size does not match.

2.1.5 Utilities

dumps (json_dict, compact=False)
Pack the given dictionary to a JSON string, returning a unicode string. Note that the return value is NOT a
bytes-like string.

If compact is True, the JSON string will be tightly packed. If compact is False, the keys will be sorted and
the JSON object will be pretty-printed.

Parameters
* json_dict (dict) — the dictionary to stringify.
* compact (bool) —the formatting option.

Return type str

2.1.6 Exceptions

class SignatureError (ValueError)

class DigestError (ValueError)

2.2 zerolib.protocol - Helpers for common data structures

This module offers functions for parsing packets and classes representing common data structures used in the ZeroNet
protocol.

It defines the following public functions and classes.

2.2.1 TLS certificate

make_cert ()
Generate and return a public key PEM and a secret key PEM. The return value is a tuple (publickey_pem,
secretkey_pem) containing the bytes of the public PEM file and the bytes of the secret PEM file.

Return type (bytes, bytes)

2.2.2 User certificate

recover_cert (user_btc, portal, name)
Recover the certificate from the user’s Bitcoin address (string), the portal type (string) and the user’s name
(string). Returns the recovered certificate, as a bytes-like string.

Parameters
e user_btc (str) - the user’s Bitcoin address.
* portal (str) —the portal type, usually defined by the certificate issuer.
* name (str) — the user’s name.

Returns the recovered certificate.

8 Chapter 2. Table of contents

zerolib Documentation, Release 0.0.0

Return type bytes

2.2.3 Routing

class Peer (object)
The data structure of a peer.

Variables
* dest (AddrPort) — the destination of the peer.

* address — property. The address of a peer, exclusing the port number. It could be an
IPv4Address, an IPv6Address, an OnionAddress, or an I2PAddress.

* port (int) — property. The port number.

* last_seen — the time when the last request from the peer is received.
* sites (set of str)-the set of sites the peer is hosting.

* score (int) — the score rating of the peer.

__init__ (self, dest, last_seen, sites = None, dht = None, score = None)

2.2.4 Packets

unpack_stream (stream, sender = None)
Unpack a stream, and indicate that it was sent from the sender. Only unpacks one packet at a time.

Parameters
* stream (BytesIO) - the stream to read data from and unpack.
* sender (AddrPort or None) — where the packet is from.
Raises
* KeyError — when a key it is looking for is missing from the packet.
* TypeError — when the type of a value is wrong and cannot be accepted.
* ValueError — when a value looks wrong.

unpack_dict (packet, sender = None)
Unpack a dictionary, and indicate that it was sent from sender.

Parameters
* packet (dict) - the dictionary to unpack.
* sender (AddrPort or None) — where the packet is from.
Raises
* KeyError — when a key it is looking for is missing from the packet.
* TypeError — when the type of a value is wrong and cannot be accepted.
* ValueError — when a value looks wrong.

unpack (data, sender = None)
Unpack a byte string, and indicate that it was sent from a network address. Only unpacks one packet at a time.

Parameters

2.2. zerolib.protocol - Helpers for common data structures 9

zerolib Documentation, Release 0.0.0

* data (bytes) — the data to unpack.
* sender (AddrPort or None) — where the packet is from.
Raises
* KeyError — when a key it is looking for is missing from the packet.
* TypeError — when the type of a value is wrong and cannot be accepted.
* ValueError — when a value looks wrong.

class AddrPort (object)
A named (address, port) tuple.

Variables

¢ address - could be an IPv4Address, an IPv6Address, an OnionAddress, or an
I2PAddress.

* port (int) — the port number.

class OnionAddress (Address)
A Tor Onion Service address, either v2 or v3.

packed
The packed representation of the address, either 10 bytes or 35 bytes long.

__str__ (self)
Returns the human readable, base-32 encoded representation of the address, with the . onion suffix.

Return type str

class I2PAddress (Address)
An I2P address, the SHA-256 hash of an I2P Destination.

packed
The packed representation of the address, a SHA-256 hash.

__str__ (self)
Returns the human readable, base-32 encoded representation of the address, with the .32 .1 2p suffix.

Return type str

class Packet (object)
The base class for a packet. Every class below for parsed packets is inherited from this base class.

Variables

* req id (int) - the request ID (sequence number) as indicated on the packet. Since the
value of this attribute is taken directly from the packet, request ID is for reference purposes
only.

* sender (AddrPort or None)- where the packet is from.
See also:
A full page of parsed packets

class PrefixIter (object)
The base class for a packet that has the prefixes attribute. It provides helper methods for easier iteration

through the prefixes.

__iter__ (self)

10 Chapter 2. Table of contents

./protocol.packets.html

zerolib Documentation, Release 0.0.0

__contains___(self, item)
A packet class inherited from PrefixIter supports iteration.

>>> from protocol import unpack_dict

>>> packet = unpack_dict ({b'cmd': b'response', b'to': 0,
b'hashfield raw': b'\x10\x11ABCDefl2'})

>>> packet

<protocol.packets.RespHashSet object at 0x7fc6blb5ad58>

>>> iter (packet)

<set_iterator object at 0x7fc6b3753990>

>>> list (iter (packet))

[b'\x10\x11', b'12', b'ef', b'AB', b'CD']

>>> b'\x10\x11l' in packet

True

>>> b'\xA0\xBl' in packet

False

class PacketInterp (object)
The packet interpreter. This state machine is used to figure out the contextual meaning of each response packet
and translate it. Consider the following example.

>>> from protocol import unpack_dict, PacketInterp

>>> request = unpack_dict ({b'reg_id': 0, b'cmd': b'actionCheckport',
.. b'params': {b'port': 15441}})
>>> response = unpack_dict ({b'cmd': b'response', b'to': O,

b'status': b'open', b'ip_external': b'l1.2.3.4'})

>>> request
<protocol.packets.CheckPort object at O0x7f71lcad453cc8>
>>> response
<protocol.packets.RespPort object at 0x7f71c9cd2948>
>>> request.port
15441
>>> response.open
True
>>> response.port
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: port
>>>
>>> state_machine = PacketInterp()
>>> state_machine.register (request)
>>> state_machine.interpret (response)
>>> response.port
15441

register (self, packet)
Register a request packet. If the packet is a symmetrical packet, or is not a request packet, do nothing.

interpret (self, packet)
Interpret a response packet and inject necessary atrtibutes into the packet instance. After that, the response
packet and the corresponding request packet will be forgotten by the packet interpreter.

If the packet is a symmetrical packet, or is not a response packet, do nothing.
Raises
* TypeError — when the type of the packet is unexpected.

* KeyError — when it cannot find any registered request packet that has the same sequence
number.

2.2. zerolib.protocol - Helpers for common data structures 11

zerolib Documentation, Release 0.0.0

static new_id()
Returns a new usable sequence number. The sequence number is a random unsigned 32-bit integer.

See also:

What are asymmetrical packets and why?

2.3 zerolib.protocol - Full list of packets

Unlike BitTorrent, not all ZeroNet packets are symmetrical. This page lists all documented ZeroNet packets in two
categories.

2.3.1 Symmetrical Packets
Every symmetrical packet contains enough information which the program can interpret without referring to the pre-
vious request packets.

class Handshake (Packet)
Unpacked handshake packet sent when the connection was initialized.

Variables
* crypto_set (set of str) - the set of supported cryptographic algorithms.

* peer_id (bytes or None) — the peer ID as a binary string. (not available in Tor
mode)

* port (int) —the port number the sender is actively listening on.
* open (bool)— whether the sender believes his port is open.

* onion (AddrPort or None) — the Tor Onion Service destination of the peer. (only
used in Tor mode)

* onion_address (OnionAddress or None) - the Tor Onion Service address of the
peer, excluding the port. (only used in Tor mode)

* protocol (str)— aunicode string representing the protocol version.
* version (str) — the version string of the sender’s software.
e rev (int) - the rev number of the sender’s software.

class ACK (Handshake)
Response packet of Handshake. Marks the end of a handshake.

Variables preferred_crypto (str) — the cryptographic algorithm that the sender would like
to use.

. as well as the attributes inherited from Handshake.
class Ping (Packet)

class Pong (Packet)

2.3.2 Asymmetrical Packets

An asymmetrical response packet itself does not contain enough information. To fully interpret an asymmetrical
response, the program has to refer to its previous requests.

12 Chapter 2. Table of contents

zerolib Documentation, Release 0.0.0

class PEX (Packet)
Unpacked pex packet that exchanges peers with the client. Peers are parsed at construct-time.

Variables
* site (str) - the site address, a human-readable Bitcoin address.
* need (int) —the number of peers the sender needs.
* peers (set of AddrPort) — clearnet peers.
* onions (set of AddrPort) — Tor Onion Service peers.
* garlics (set of AddrPort)—I2P Hidden Service peers.

class RespPEX (Packet)
Response packet of PEX.

Variables
* peers (set of AddrPort) — clearnet peers.
* onions (set of AddrPort) — Tor Onion Service peers.
* garlics (set of AddrPort)—I2P Hidden Service peers.
The following variables will be injected when the packet is handled by the state machine.
Variables site (str) - the site address, a human-readable Bitcoin address.

class GetFile (Packet)
Unpacked getF1ile packet that requests for a file.

Variables
e site (str) - the site address, a human-readable Bitcoin address.
* inner_path (str) — the relative path to the requested file.
* offset (int)—request file from this offset.
* total_size (int or None) - the total size of the requested file. (optional)

class RespFile (Packet)
Response packet of GetFile.

Variables

* body (bytes) — a chunk of file content.

* last_byte (int) — the absolute offset of the last byte of body.

* total_size (int) - the total size of the whole file.

* offset (int) — property. The absolute offset of the first byte of body.

* next_offset (int) - property. The start offset of the next getFile request.

The following variables will be injected when the packet is handled by the state machine.

Variables

e site (str) - the site address, a human-readable Bitcoin address.

* inner_path (str) — the relative path to the requested file.

class ListMod (Packet)
Unpacked 1istModified packet that requests for the paths of content. json files modified since the
given time. This packet is used to heuristically list a site’s new user content.

2.3. zerolib.protocol - Full list of packets 13

zerolib Documentation, Release 0.0.0

Variables
* site (str) - the site address, a human-readable Bitcoin address.

* since (int) - list modified content . json files since this timestamp. The timestamp
is in seconds.

Warning: This timestamp is defined vaguely in the spec. Is it an int or a float? Link to the spec.

class RespMod (Packet)
Response packet of ListMod.

Variables timestamps (dict of str and int)—the {inner_path : mtime} dic-
tionary.

__iter__ (self)
__contains___ (self, key)

items (self)
Helper methods for iterating through the t imestamps.

for (inner_path, mtime) in packet.items{():

o

print ('New file , last modified ' % (inner_path, mtime))

The following variables will be injected when the packet is handled by the state machine.
Variables site (str) - the site address, a human-readable Bitcoin address.

class GetHash (Packet)
Unpacked get Hashfield packet that requests for the client’s list of downloaded optional file IDs.

Variables site (str) - the site address, a human-readable Bitcoin address.

class RespHashSet (Packet, Prefixlter)
Response packet of Get Hash.

Variables prefixes (set of bytes)— hash ID prefixes in a set.
The following variables will be injected when the packet is handled by the state machine.
Variables site (str) - the site address, a human-readable Bitcoin address.

class FindHash (Packet)
Unpacked findHashIds packet that asks if the client knows any peer that has the said optional file IDs.

Variables
e site (str) - the site address, a human-readable Bitcoin address.

* prefixes (set of bytes)-the setof optional file IDs. An optional file ID is the first
2 bytes of the file’s hash.

class RespHashDict (Packet)
Response packet of FindHash.

class SetHash (Packet)
Unpacked setHashfield packet that announces the sender’s list of optional file IDs.

Variables

* site (str) - the site address, a human-readable Bitcoin address.

14 Chapter 2. Table of contents

https://zeronet.readthedocs.io/en/latest/help_zeronet/network_protocol/#listmodified-site-since

zerolib Documentation, Release 0.0.0

* prefixes (set of bytes) - the set of optional file IDs. An optional file ID is the first
2 bytes of the file’s hash.

class Predicate (Packet)
Status predicate. Either an ok packet or an error packet. Response packet of Update and SetHash.

Variables ok (bool) - Okay?

class Update (Packet)
Unpacked update packet that pushes a new site file.

Its response packetis a Predicate.

class CheckPort (Packet)
Unpacked actionCheckport packet that asks the client to check the sender’s port status.

Variables port (int) — the port number which the sender would like you to check.

class RespPort (Packet)
Response packet of CheckPort.

Variables
* status (str) — port status as a human-readable string.
* open (bool)— whether the port is open.
The following variables will be injected when the packet is handled by the state machine.

Variables port (int)—the port number which the sender would like you to check.

2.4 zerolib.nettools - Higher level network I/O utilities

The zerolib.nettools module defines functions and classes which help in interacting with remote peers in the
network.

2.4.1 Connection
class Connections (object)
The connection manager.
__init__ (self, capacity=200, clean_func = None)
register (self, dest, socket)
__getitem__ (self, key)
__delitem__ (self, key)
__contains___ (self, key)
__iter__ (self)
__len__ (self)

2.4. zerolib.nettools - Higher level network 1/O utilities 15

zerolib Documentation, Release 0.0.0

2.5 Discussion

2.5.1 What are asymmetrical packets and why?

When messages sent in both directions look the same, we call these messages symmetrical. BitTorrent packets are
symmetrical. A response is a request. A request is a directive. The reason behind this design choice is to avoid using
a sequence number, even when packets can be lost, duplicated or received not in order.

Unlike BitTorrent, not all ZeroNet packets are symmetrical. To fully interpret an asymmetrical response packet, a
computer program has to refer to its previous request packets.

The reason behind this design decision is to minimize data transfer. For example, the same Bitcoin address that
appears in the request is omitted in the response, so that a computer program need not receive and parse the same
Bitcoin address twice. However, this design decision makes every implementation of this protocol rely on a state
machine.

16 Chapter 2. Table of contents

Index

Symbols

__contains__() (Connections method), 15
__contains__() (PrefixIter method), 10
__contains__() (RespMod method), 14
__delitem__() (Connections method), 15
__getitem__ () (Connections method), 15
__init__() (Connections method), 15
__init__() (Peer method), 9

__iter__() (Connections method), 15
__iter__ () (PrefixIter method), 10
__iter__() (RespMod method), 14
__len__() (Connections method), 15

_ str__() (I2PAddress method), 10

_ str__() (OnionAddress method), 10

A

ACK (built-in class), 12
address_public_digest() (built-in function), 6
AddrPort (built-in class), 10

B

bitcoin_address() (built-in function), 5

C

CheckPort (built-in class), 15
compute_public_address() (built-in function), 5
compute_secret_address() (built-in function), 5
Connections (built-in class), 15

D

decode_secret_key() (built-in function), 6
digest_bytes() (built-in function), 6
digest_file() (built-in function), 7
digest_stream() (built-in function), 7
DigestError (built-in class), 8

dumps() (built-in function), 8

F

FindHash (built-in class), 14

G

GetFile (built-in class), 13
GetHash (built-in class), 14

H

Handshake (built-in class), 12

I2PAddress (built-in class), 10
interpret() (PacketInterp method), 11
items() (RespMod method), 14

K

key_pair() (built-in function), 5

L

ListMod (built-in class), 13

M

make_cert() (built-in function), 8

N

new_id() (Packetlnterp static method), 11

O

OnionAddress (built-in class), 10

P

packed (I2PAddress attribute), 10
packed (OnionAddress attribute), 10
Packet (built-in class), 10
Packetlnterp (built-in class), 11
Peer (built-in class), 9

PEX (built-in class), 12

Ping (built-in class), 12

Pong (built-in class), 12

Predicate (built-in class), 15
PrefixIter (built-in class), 10

17

zerolib Documentation, Release 0.0.0

public_digest() (built-in function), 5

R

recover_cert() (built-in function), 8
recover_public_key() (built-in function), 6
register() (Connections method), 15
register() (PacketInterp method), 11
RespFile (built-in class), 13
RespHashDict (built-in class), 14
RespHashSet (built-in class), 14
RespMod (built-in class), 14

RespPEX (built-in class), 13

RespPort (built-in class), 15

S

SetHash (built-in class), 14
sign_data() (built-in function), 6
SignatureError (built-in class), 8

U

unpack() (built-in function), 9
unpack_dict() (built-in function), 9
unpack_stream() (built-in function), 9
Update (built-in class), 15

V

verify_data() (built-in function), 6
verify_digest_bytes() (built-in function), 7
verify_digest_file() (built-in function), 7
verify_digest_stream() (built-in function), 7

18

Index

	How to install
	Table of contents
	zerolib.integrity - Working with data integrity
	zerolib.protocol - Helpers for common data structures
	zerolib.protocol - Full list of packets
	zerolib.nettools - Higher level network I/O utilities
	Discussion

